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Abstract. In son-mode structural phase transitions the Ginzburg temperature interval in which 
Euctuations and the interactions beween them become important is often observed to be small 
on the scale of the transition temperature. We consider the size of the Ginzburg interval (01) in 
framework and ‘cogwheel‘ s t ruc tus  using the concept of ‘rigid unit modes’. Such materials, 
as well as being very displxive, i.e. close to the soft-mode limit, have an extremely anisotropic 
phonon spectrum. Modelling these two properties with a suitable effective Hamiltonian for the 
degrees of freedom driving the transition we find that the CL can range from very small to large, 
depending on lhe balance between displaciveness and anisotropy. For the two perovshtes SrTiOl 
and LaAIO, and the ‘cogwheel‘ structure KISe04, we obtain values of the model parameters 
describing displaciveness and anisotropy from experimentally measured phonon dispersions and 
hnd, for the size of the GI, quantitative agreement wilh experiment. We also estimate typical 
values for the model parameters and the size of the GI for framework silicates, using quartz and 
Cristobalite as examples. Rnally. we use computer simulations to confirm the results of our 
theoretical analysis over a wider range of model parameters. 

1. The Ginzburg interval in rigid unit mode systems 

The purpose of this paper is to discuss the magnitude of the Ginzburg interval (GI), A &  
in displacive structural phase transitions. We are concemed with materials that have strong 
anisotropies in the phonon spectra in the neighbourhood of unstable soft modes. These 
anisotropies can arise naturally, for example, in structures that consist of linkages of 
relatively rigid units, where the soft mode is one of the so-called ‘rigid unit modes’ that can 
propagate with no distortion of the units [ H I .  Rigid unit modes have been found to be 
particularly important in silicates, hut we will point out later than similar anisotropies can 
arise in other systems. In this paper we will address the issue of the effect of the anisotropy 
of the phonon spectrum on the size of the GI. 

Structural phase transitions in solids are traditionally described in terms of Landau free 
energies which contain the order parameter of the transition, Q, as a variational parameter. 
For example, minimization of the simple Landau free energy 

(1) F = a(T - T,)Qz + j3Q4 
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yields the ‘classical’ temperature dependence of the order parameter below the transition 
temperature Tc 

which is obeyed quite well in many structural phase transitions over a wide temperature 
range [ 5 ] .  

It is known, however, that the expression (1) cannot he true arbitrarily close to the 
transition temperature. Within the GI long-wavelength fluctuations of the (local) order 
parameter increase without limit and become ‘non-classical’ in the sense that they can no 
longer be neglected or treated by a classical decoupling scheme such as mean field or 
renormalized phonon theory [6-8]. 

A traditional approach to determining the GI is to add terms of the form Sdry(0Q)’  
to the Landau free energy (1) and to define the GI as the temperature region in which this 
augmented Landau free energy is no longer internally consistent [9], (For a criticism of this 
method see, for example, [IO].) The GI is thus expressed in terms of the phenomenological 
parameters 01, T,. B. y of the augmented Landau free energy. Alternatively, one can obtain 
the GI starting from a description of the system in terms of an effective Hamiltonian, whose 
parameters reflect the microscopic mechanisms of the phase transition more directly than 
those of the Landau free energy. The materials with which we are concerned can be 
easily characterized in terms of an effective Hamiltonian, whereas the precise form of the 
corresponding Landau free energy is less clear; we shall therefore use a model effective 
Hamiltonian for our calculations of the GI. 

We now describe the main features of the types of structures under consideration and 
the rigid unit mode characteristics of their phonon spectrum. We restrict ourselves to the 
essential features that will have to be contained in our model effective Hamiltonian and refer 
the reader to [3,4,11-141 for more details of the rigid unil mode model. Many materials 
contain or consist of rather rigid units such as tetrahedra, octahedra or (planar) triangles. In 
what we term ‘framework’ structures these form a continuous network by sharing corner 
atoms between adjacent units. Examples are many alumino-silicates containing joined AI04 
and Si04 tetrahedra and perovskites containing XO6 octahedra. The point about a framework 
structure is that the units are very stiff but are linked flexibly to each other at the corner 
atoms (although we note here that many perovskites cannot really be described in this way; 
however, we will continue to use the general perovskite structure as an example since it has 
the great advantage that it  has a relatively simple structure). The following question then 
arises: if we treat the units as completely rigid, does the framework have any geometrically 
allowed phonon modes of motion in which the units only rotate and/or translate as rigid 
wholes? The answer is that such ‘rigid unit modes’ (RUMS) do indeed exist along special 
directions in the Brillouin zone [I 1,141. Clearly, in a real material, the RUMS will he 
phonons with a relatively low frequency with perhaps one of them resulting in a soft-mode 
phase transition as considered here, while all other phonons are typified by much higher 
frequencies because they necessarily involve distorting the rather stiff units. 

We see therefore that the phonon spectra w2(k) of framework structures are very 
anisotropic, with ‘valleys’ in k-space where there are geometrically allowed RUMS. These 
valleys will make the dominating contributions to the fluctuations near T, and determine 
the GI AT, in our theory. 

By way of example, consider the ‘two-dimensional (2D) perovskite’ structure shown 
in figure I@): a square lattice of octahedra representing the rigid units (and appearing as 
squares in the two-dimensional projection) linked via shared corner atoms. If one of these 
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Figure 1. The ‘twodimensional pemvskite’ svuctnre. Octahedra appear as squares in the 
projection: the links between neighbouring squares correspond to a l m s  shared between the 
octahedra in real perovskites. (a) Undistorted svucture. (b) RUM displacement pattern. Notice 
how, by the opposite rotations of neighbouring octahedra indicated in (a), the shape of the 
octahedral UN- is preserved while n@ne of the links between them is broken. 

octahedra is rotated from its equilibrium position by an angle 8, it will try to rotate its 
nearest neighbours by an angle -8 in order to preserve its shape. In a ‘knock-on effect’, 
this leads to rotations of the next-nearest neighbours and so on. finally yielding the pattern 
of alternating rotations shown in figure I(6). This displacement pattern is a RUM of ZD 
perovskite because it leaves the octahedral units undistorted. Since the rotation angles of 
neighbouring octahedra have opposite signs, the wavevector of this RUM lies at the comer 
of the Brillouin zone of the square lattice. It can be checked that U) perovskite has no other 
non-trivial RUM and so we shall call the Brillouin zone corner RUM ‘isolated‘. 

In general, however, framework structures can support a number of RUMS. To see 
bow this happens, consider as an example ‘three-dimensional (30) perovskite’, obtained by 
stacking layers of ZD perovskite on top of each other. A RUM for this structure can be 
constructed by rotating the octahedra in every plane according to the 2D perovskite RUM 
pattern. But as long as the corresponding rotation angles are sufficiently small, they can 
be chosen independenlly of each other without breaking the bonds between neighbouring 
octahedra in adjacent planes. Therefore, 3D perovskite has a line of RUMS in wavevector 
space, along the edge of the Brillouin zone corresponding to the direction perpendicular 
to the 2D perovskite layers. (Of course, there exist in fact three such RUM lines, since the 
octahedra can be rotated around each of the axes of the cubic lattice.) More complicated 
framework shuctures can be shown to have RUMS along planes or even across the whole of 
the Brillouin zone [ I  1,141. 

While framework structures provide the clearest examples of RUMS, we believe that the 
situation is similar in other systems that contain distinct atoms or rigid molecular groups 
that do not share atoms. Examples involving ‘cogwheel’-type motions are the AzB& 
salts such as KzSe04, and biphenyl. In these materials one rigid unit can rotate easily 
only if neighbouring units also rotate in the manner of enmeshed cogwheels. The wrong 
rotations will bring into play the strong short-range repulsive forces between the units. Other 
systems involve atoms sliding across each other, maintaining a constant contact distance. 
Examples include the two ferroelastic materials HCN and NazC03 [4]. In the case of 
sliding systems, the anisofropy of force constants (analogous to the difference in framework 
shuctures between the stiffness of the units and the weak rotational interactions between 
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linked units) arises from the difference between the longitudinal (radial) and transverse 
(sliding) force constants between two atoms in contact. In all these examples the phonon 
spectrum will contain valleys in k-space containing the easy modes of distortion, with rather 
steep dispersion away from the soft directions, and our work will be directly relevant. 

The structure of the paper is as follows. In section 2 we construct a suitable model of 
the phonon spectrum exhibiting the ‘valleys’ around the RUMS in k-space. This will be the 
main ingredient for the model effective Hamiltonian from which we calculate the GI. We 
consider two versions, one with a RUM line and one with a RUM plane, corresponding to 
a ‘RUM dimensionality’ dnuM = 1 and 2, respectively. The model is characterized by two 
dimensionless parameters, s and 6. The ‘displaciveness’ s specifies how close the system is 
to the soft-mode limit at s = 0; the crossover from soft mode to order-disorder behaviour 
would occur around s % 1 in our model. We have shown elsewhere [12] that a RUM system 
will in general be near the soft-mode limit, i.e. have s << I ,  because s is given more or 
less by the ratio of the weak forces between linked units, which drive the transition, to the 
large stiffness of the units. Other things being equal, a small s tends to give a small GI. 
The ‘anisotropy’ parameter t measures the dispersion of w2(k) among the RUMS relative 
to the dispersion in the rest of the spectrum, so we expect E << 1. The larger t. the less 
soft will be the RUMS away from the special point ko where the soft-mode transition occurs 
and hence the smaller the fluctuations and the GI will be. The thud factor determining the 
size of the GI is the dimensionality of the RUM sector: a system with a plane of RUMS i n  
k-space (dRUM = 2) has larger fluctuations and a larger GI than a system with a RUM line 
(dRUM = 1). 

In section 3 we discuss the principles of how to calculate the GI from the model effective 
Hamiltonian for RUM systems, namely by determining the temperature region in  which the 
best classical approximation breaks down. Our model treats only one coordinate per unit 
cell: the relevant rotation and/or translation of the rigid unit. The effect of all other optic 
and acoustic modes is swept up into the parameters of the model effective Hamiltonian. 
Since the system is in the soft-mode regime, the best classical approximation for analysing 
the effective Hamiltonian is the ‘independent mode’ approximation, from which the size of 
the GI is calculated in section 4. The results are presented and interpreted in terms of the 
displaciveness s and anisotropy c, in particular for some limiting cases. 

In section 5 ,  we calculate the size of the GI quantitatively for the two perovskites 
SrTiOs and LaAIO, and the ‘cogwheel structure’ KzSe04 and compare with experiment. 
We furthermore estimate typical values for the model parameters and the size of the GI for 
framework silicates, using quartz and cristobalite as examples. 

Results of computer simulations we performed in order to confirm our theoretical 
analysis over a wider range of model parameters are reported in section 6. We conclude in 
section 7 with a brief summary of our results. 

2. Model phonon spectrum for rigid unit mode systems 

In this section we develop a model to represent the phonon spectrum relating to a soft-mode 
phase transition in a system with RUMS. It will be based on consideration of the perovskite 
structure but will be sufficiently general to be generic. We will use this phonon model as 
the quadratic part of our model effective Hamiltonian for RUM systems. Some of the (bare) 
phonons will be unstable, namely the soft mode and phonons near it; fourth-order terms 
in the effective Hamiltonian will stabilize the phonons at a high temperature and give a 
soft-mode phase transition at some T, in the usual manner of the model’. 
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The first point is to represent the stiffness of the units. As mentioned in section 1. all 
phonons except RUMS, by definition, involve some distortion of the rigid units. (We shall 
for convenience continue to refer to the units as ‘rigid’, meaning they have large but finite 
stiffness.) In figure I(a) each square has five independent modes of distortion described 
by four force constants (two modes are degenerate); three-dimensional octahedra require 
even more parameters. It is easier, and for our purposes sufficient, to use the ‘split-atom’ 
approach [ l l ,  141, considering the octahedra as totally rigid and instead treating each corner 
atom that links two adjacent octahedra as an elastic joint, i.e. as two halves of a ‘split 
atom’ with a harmonic spring between them. The finite stiffness of the octahedra is then 
modelled by the single force constant of this spring which tends to keep the corners of 
adjacent octahedra, i.e. the halves of the split atom, together. 

In the ZD perovskite case, the potential energy of such a spring between neighbouring 
units i and j can be written as 

$(@i + @ j Y  (3) 

to lowest order in  the rotation angles @ j  and @j. For @i = -@j this expression vanishes, 
reflecting the fact that the units can rotate as rigid wholes without breaking the link between 
them (see figure l(b)). For @i # -@j we obtain a non-zero contribution due to the separation 
of the halves of the split comer atom which models the distortion that the octahedra would 
have to undergo were we to keep them linked via the ‘un-split’ comer atom. The coupling 
constant L in the split-atom model therefore corresponds to the stiffness of the octahedral 
units. 

In order to have a force which drives the phase transition, we add a negative potential 
energy term 

favouring the bending of bonds between neighbouring units. Clearly, this term needs to 
be countered by a positive higher-order term in order to make the system stable, but for 
the moment we only concern ourselves with the bare phonons and hence the quadratic 
contributions to the potential energy. We expect the (positive) force constant S describing 
forces between the octahedral units to be small (S)  compared to the large ( L )  force constant 
which reflects the rigidity of the units [4,12]: 

s << L. ( 5 )  

The total potential energy of our ZD perovskite model can now be written as 

V i )  

where the sum extends over all pairs of octahedra which are nearest neighbours. We 
hansfonn to Fourier coordinates: 

where N is the total number of octahedra, located at the lattice sites ri. We obtain 
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with the sum running over all wavevectors in the two-dimensional Brillouin zone and 

&(k) = Z ( L + S ) ( Z + c o s k , n + c ~ ~ k ~ a )  (9) 

where a is the lattice parameter. Up to an unimportant mass scale, which we set to unity, 
we can read off the bare phonon spectrum of our model: 

&(k) = -8s + J2D(k) (10) 

where the frequency of the Brillouin zone comer RUM is imaginary, 02(k = (n/a,  x/a) )  = 
-8S, as required for a soft-mode phase @ansition in which this mode freezes. 

If we now tum to 3D perovskite, all we need to do is to add up the contributions from 
the constituent 2D perovskite planes. In order to make the model a truly three-dimensional 
one, we add a coupling between neighbouring octahedra in adjacent planes of the form (3) 

iS’(4h + 4,Y (11) 

with a much smaller force constant S’ obeying 

S‘ < L 

since the coupling between octahedra in adjacent planes arises not from distortion of the 
units but from bond-bending-type forces. We thus obtain for the potential energy of our 3D 
perovskite model 

with the sum now running over the three-dimensional Brillouin zone and 

J3D(k) =2(L+S)(Z+cosk,a +coskya)+2S’(1 +cosk,a). (14) 

In terms of the abbreviations 

A = 8 S  Jr = 2s’ J. = 2(L + S) (15) 

for the modulus of the bare frequency of the most unstable RUM squared and the coupling 
constants determining the dispersion along RUM (suffix I) and non-RUM (suffix n) directions, 
the corresponding bare phonon spectrum ~ : ~ ( k )  = -SS + J3~(k) is 

&(k) = -A+J . (2+cosk ,a+coskya)+J , (1  +cosk,a). (16) 

This is plotted schematically in figure 2 for k moving away from the most unstable RUM 
at k% = @/a, n / a ,  x / u )  along the ‘RUM direction’, kz, and along one of the nOn-RUM 
directions, kx. We observe the following two characteristic features of the bare phonon 
spectrum. 

(i) Displaciveness. The bare frequency squared of the most unstable RUM is small 
compared to the frequency squared of typical non-RUMS as a consequence of (5): 

SE-=- A ss <<1 
J. L + S  
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RUM direction non-RUM direction 
k = (k, $, $) 

We can say that the RUM line lies along ‘the bottom of a steep valley’ [4] in wavevector 
space or, equivalently, that the fraction of bare modes which are unstable is small. 

(ii) Anisotropy. The dispersion along the direction of the RUM line is much smaller than 
away from it: 

J, S’ 
J,, L + S  “‘ €=-E- 

as follows from (12). The smaller J,  (and hence E )  becomes, the larger the number of 
unstable bare modes. 

Using the fact that the size of the GI decreases with the fraction of bare modes which 
are unstable (A P Levanjuk, private communication), we can qualitatively predict that the 
GI must become smaller as we increase the displaciveness (i.e. make s smaller) but larger 
as we increase the anisobopy (i.e. make 6 smaller). The actual size of the GI will depend 
on the balance of these two factors, as pointed out in section 1 .  

It will sometimes be helpful to interpret our results in terms of two characteristic 
correlation length scales in RUM systems. As shown in the next section and in appendix 1, 
the parameter A gives not only the bare frequency squared of the most unstable RUM at the 
Brillouin zone corner b, but also the scale of the upwards renormalization of the phonon 
dispersion due to anharmonic effects, at temperatures well above or well below the phase 
bansition. Using this, and expanding around b, we obtain for the typical renormalized (as 
opposed to bare) phonon dispersion around the lowest-frequency mode 

wkn(lc) M +A + J n ~ ’ [ ( k x  - k0.x)’ t (ky - ko.y)’] + $ J d ( k z  - k0.z)’. (19) 

Disregarding all numerical factors, we read off that fluctuations along the (real-space) non- 
RUM directions x and y will typically be correlated over 

en = (Jn/A)1’2 = s-”’ >> 1 (20) 
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lattice units, whereas along the RUM direction e ,  correlations have a range of only 

We stress here that we have defined fn and 6, as temperature-independent quantities, quite 
unlike the temperature-dependent correlation lengths often used in, for example, discussions 
of critical phenomena. The quantities and & can be thought of as ‘prefactors’ in the 
formulae for the corresponding temperature-dependent correlation lengths, setting the overall 
scale of correlations over a wide temperature range. 

The inequalities for cn and f r  given in (20) and (21) are derived from displaciveness (17) 
and anisotropy (18). For 3D perovskite. they can easily be understood geometrically. The 
value of cn describes correlations between rotations of octahedra in the same ‘?D perovskite 
plane’ which are strongly coupled due to the stiffness of the units and the knock-on effect 
discussed above. The much smaller value of &, on the other hand, reflects the fact that the 
octahedra in adjacent planes are only weakly coupled through bond-bending-type forces. 

To summarize, the RUM picture has two crucial consequences. On the one hand, it leads 
to long-range correlations along directions where no RUMS exist, corresponding to a strong 
dispersion in k-space. On the other hand, correlations along R L ~ M  directions will be of rather 
short range, reflecting the flat dispersion along RUM lines or planes. Our main concern will 
be to analyse how the interplay of these two length scales affects the size of the GI. 

3. Effective Hamiltonians and bow to detennine the size of the GI 

We base our calculations of the GI on a model effective Hamiltonian which captures the 
essential features of RUM systems. We prefer starting from an effective Hamiltonian rather 
than a Landau free energy since the former contains in a more direct way information 
about the microscopic features of phase transitions in framework structures which the RUM 
model provides. Essentially, the effective Hamiltonian allows us to focus on the degrees of 
freedom most relevant to the transition. In the perovskite case, for example, the angles of 
rotation of the octahedra are the relevant degrees of freedom, whereas all other degrees of 
freedom can be considered irrelevant. Formally, an effective Hamiltonian can be defined 
with respect to an arbitrary set @ = (e;] of observables of a system as 

where H is the full Hamiltonian, r denotes a set of canonical phase space coordinates and 
,3 = l / k a T .  From the relation between the effective Hamiltonian and the total free energy 
of the system 

exp(-BF) = 1 d@exp(-BH,dQ)) (23) 

it can readily be seen that the effective Hamiltonian acts jnst like an ordinary Hamiltonian 
in generating the equilibrium distribution of the e;. Due to the free energy contribution 
of the degrees of freedom not contained in Q, however, the effective Hamiltonian will in 
general depend on temperature. This temperature dependence will be ‘smooth’ (without 
non-analyticities at the transition temperature) if the set 9 = (*;) contains all degrees of 
freedom whose fluctuations become non-classical, i.e. strongly interacting, near the phase 
transition. 
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How, then, do we determine the GI if we are given an effective Hamiltonian? We define 
the GI to be the temperature interval around a phase transition in which ‘non-classical’ 
behaviour occurs. in the sense that fluctuations and their interactions become important. 
Stated differently, inside the GI the behaviour of a system can no longer be described within 
a ‘classical’ approximation which decouples fluctuations and therefore effectivety reduces 
the system to an assembly of simple non-interacting entities. Consequently, the GI can 
be determined by applying the most suitable classical approximation to a given effective 
Hamiltonian and checking where this approximation breaks down. We note three points. 

Firstly, various classical approximation schemes might in general have to be tried out to 
establish which one is most suitable, i.e. optimal in approximating the actual behaviour of 
a system described by a given effective Hamiltonian. For the model effective Hamiltonian 
that we consider below, we can exploit results from the literature to avoid this complication. 

Secondly, as the size of the GI depends on the precision of the classical approximation 
that we require, there is inevitably some arbitrariness in the calculation of it. In order to 
keep our discussion as quantitative as possible, beyond this inherent limitation, we keep 
throughout numerical constants that are often dismissed as ‘of order unity’ in discussions 
of the GI. 

Thirdly, we follow the widely accepted assumption that the part of the GI extending 
above the transition temperature is approximately equal to the part below the transition, and 
we therefore only calculate the latter. Our calculations will yield the value of the order 
parameter at the lower boundary of the GI. We show in the next section how this quantity 
is related to the size of the GI on the temperature scale. 

4. Model effective Hamiltonian for RUM system and cafculation of the GI 

From our discussion in sections 1 and 2 it is clear that a model effective Hamiltonian for 
RUM systems must embody both displaciveness and anisotropy. The bare phonon dispersion 
(16) that we have read off from OUT model potential energy for 3D perovskite (13) already 
fulfills this requirement, and we take (13) as the quadratic part of our model effective 
Hamiltonian. For simplicity, however, we shift the most unstable RUM from the Brillouin 
zone corner to the zone centre in order to have an ordered (low-temperature) phase of the 
‘ferro’ type. We also set J = J,  and use definitions (17) and (18) to obtain 

with J ( k )  given by 

J ( k ) =  Jfi.,(k)= J ( 2 - c o s k , a - c o s k , a ) t ~ J ( 1 - c 0 ~ k ~ a ) .  (25) 
This form of the bare phonon dispersion models systems with a RUM line as well as, for 
E = 1. systems with an isolated RUM. For the case of a RUM plane, all we need to do is to 
change the definition of J ( k )  such that there are two RUM directions and only one non-RUM 
direction: 

J(k) = Jplmc(k)=EJ(2-cosk,a-cosk,a)+ J(l -cosk,a). (26) 

We now have to add an anharmonic part to our model effective Hamiltonian in order 
to make it stable. We choose a simple local fourth-order anharmonicity: 
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and write our total model effective Hamiltonian, a ‘$4-Hamiltonian’, as 

H = H p d r  4- H a  = - C(-SJ + J(k) )#(k)4( -k)  
1 

2 ,  

+ #(ki)$(kz)$(k3)$(-h - kz - k3) (28) 

with J ( k )  given by (2.5) or (26). respectively. To be precise, we should add a kinetic energy 
term. This is however immaterial to our discussion and shall therefore be omitted. 

Several comments are now in order. We  ink of the $j as generalizations of the 
octahedra rotation angles in our perovskite models, i.e. as local variables describing the 
rotations and/or translations of the units associated with the RUMS in the system under study. 
The $(k) are the corresponding optic mode coordinates. 

Furthermore, we have assumed the parameters B ,  J ,  s, E to be temperature independent. 
This implies two assumptions. Firstly, that apart from the $(k), no other degrees of freedom 
of the system undergo non-classical fluctuations near the phase transition, so that there are no 
non-analyticities in the temperature dependence of the model parameters. Secondly, we take 
the entropy contribution from these other ‘irrelevant’ degrees of freedom as non-essential for 
driving the transition, an assumption which is supported by calculations we have performed 
on quartz. Hence we assume our model parameters to be actually temperature independent, 
in contrast to other model effective Hamiltonians which often use a term like n(T - To) 
instead of our -sJ,  where sets a temperature scale at which entropy contributions from 
the degrees of freedom not explicitly retained in the effective Hamiltonian become important. 

Finally, the model (28) is obviously too simple to describe the finer details of RUM 
systems. For our purposes, however, it captures the essential physics. 

We now want to calculate the size of the GI in RUM systems as modelled by our 
effective Hamiltonian (28). As explained in the previous section, we do this by determining 
the validity of the best classical approximation. In our case this is the ‘independent-mode’ 
(IM) approximation in the sense of [SI, since our systems are near the soft-mode limit. In 
fact Eisenriegler [I51 found that the IM approximation becomes exact in the limit s + 0. 
The results of the IM approximation, which provides a simple picture of the phase transition 
in terms of phonon softening, are summarized in appendix 1. 

In order to establish the limits of validity of the IM approximation, we proceed as 
follows. We check the internal consistency of the IM approximation by determining how 
well it obeys the exact fluctuation-susceptibility relation given in appendix 2 in (A2.2). 
We derive the corresponding criterion for determining the lower boundary of the GI (which, 
incidentally, has the same functional form as the one derived by Bruce [8] within a different 
approach) in appendix 2. We denote by q the order parameter Q normalized to its value at 
zero temperature Qo: 

4N ki.kz.h 

q ( T )  = Q V ) / Q o  (29) 

and by qc the value of this normalized order parameter at the lower boundary of the GI. The 
corresponding lower boundary temperature TC of the GI is related to q G  via the IM equation 
of state (A1.6): 

TG = TcM(l -q#!j)/c(q#!j). (30) 

Here we have used the definition (A1.7) of the function c(q2), and the temperature 2’:” is the 
lower stability limit of the disordered (high-temperature) phase within the IM approximation. 
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This is not quite the iM transition temperature itself because the IM approximation predicts 
(incorrectly) a slightly first-order transition at a temperature above T,". With this notation, 
our criterion is (see (A2.11) in appendix 2)  

3 TG Jm 1 1 << 1 T ( q i  + J ( k ) / 2 . J ) 2  
3 TG Jm 1 1 << 1 T ( q i  + J ( k ) / 2 . J ) 2  

where J M  is an effective coupling constant obtained by a suitable average over the J(k) 
as defined in (A1.9). 

The model effective Hamiltonian (28) is characterized by the four parameters B ,  J ,  s 
and E. The effect of B and J can be absorbed into a rescaling of temperature and order 
parameter, and we are left with the two, by now familiar. dimensionless parameters s and E 
characterizing the model. Since we are modelling displacive anisotropic systems, we expect 
both of these parameters to be small compared to unity, as spelled out in (17) and (18). Our 
calculations will yield qi as a function of these two parameters s and E. This quantity can 
be related to the size of the GI on the temperature scale as follows. As mentioned above, 
we confine our attention to the part of the GI below the transition temperature, which can 
be expressed as 

ATG = T, - TG (32) 

where T, is the true transition temperature. If we normalize AT0 by Tc, we can write the 
inequality 

ATGIT,. = 1 - T G / Z  < q; (33) 

which can be used to convert between qi and ATG. Equation (33) is a consequence of the 
inequality 

2 1 - TIT, (34) 

which follows from the fact that outside the GI the squared order parameter varies linearly 
with temperature (this can be verified from the IM equation of state (A1.6) [16]), but on 
further approaching Tc 'bends down' because the order parameter critical exponent of the 
q54 model is smaller than 1/2 (see for example [8]). 

For our actual calculations based on the criterion (31), we replace the inequality by an 
equality of the form 

where K is a constant of order unity. For the derivations of the functional dependence 
of 4~ on s and t we use what seems the most natural choice, K = 1; for comparison 
with experimental observations in section 5 and with the results of computer simulations in 
section 6, we also give the results for K = 0.5 in order to see how variations in K affect the 
value of 40. 

We rewrite (35) as 

3 To 1 
- - - f ( € ) - I ( q i ; S , € )  = K 
4 Tp" s 
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where 

J J 

The quantity f ( s )  reflects within the IM approximation the effect of the anisotropy present 
in the system on the transition temperature. In fact, we have from (A1.9) 

3 k ~ T ~ ~  = f(e)JQ;. (39) 

Before proceeding to a numerical calculation of q&, E) directly from (36), we want 
to analyse the behaviour of q:(s, E )  in two limiting cases, for which we can calculate its 
functional form analytically to a good approximation. The dependence of I (qi; s, E) on q: 
and the parameters s and E can be estimated as follows. One evaluates the sum in (37) 
by performing the corresponding integral over the Brillouin zone. Recognizing that the 
integrand has the form of a smooth high-frequency cutoff function, one can replace it to a 
first approximation by a sharp cutoff, setting the integrand to qG4 where J @ ) / Z r J  < 4; 
and to zero otherwise. Writing  RUM = 1 and 2 for a R U M  l i e ,  one thus obtains 

4; < E / S  (40) -1  - d ~ w / 2 ~ 3 / 2  I a q G  E 

and 

I o( qc's q: >> E/s for a RUM line 

I = q ,  -3 s 112 q; >> EIS 
(41) 

for a RUM plane. 

The dependence of I on s and E in (40) can be summed up by saying that each RUM direction 
contributes a factor of ( s / E ) ' ~  = t;' and each nOn-RUM direction a factor s'/' = 5;'. i.e. 
each direction contributes a factor proportional to the inverse of the correlation length in 
that direction. Equation (41) can be interpreted in the sense that the correlation length in 
the RUM directions is so short that it  no longer appears in the result, so that the integral I 
effectively behaves as for a two- or onedimensional system. 

If we now consider the prefactor f ( s )  in (36), defined in (38), we recognize that for 
6 = 0, the integrand in (38) has a singularity at k = 0 which makes the integral divergent; 
f must therefore tend to zero as E + 0. By considering the behaviour of the integrand in 
(38) near the singularities that arise as E -+ 0 it can be shown that asymptotically 

f ( c )  cx l / l lnsl  

f ( ~ )  CY ,/Z 
for a RUM line 

for a RUM plane. 

As yet, the behaviour of the factor TG/TcM in (36), which is related to q; by the IM 
equation of state (30), TG/Tcm = (1 - q:)/c(q;). has not been discussed. Following an 
argument by Bruce [SI, one can assume that as long as q; is small, the approximation 
TG F): T:" is justified. In the limit of extreme anisotropy 6 -+ 0, however, TJM + 0 from 
(39) and hence the factor Tc/T,'M can become large if the predicted value of q: lies in the 
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temperature region above Tcm where the IM still predicts the existence of a stable ordered 
phase. In this case it will be more convenient to consider the product 

(43) 

because in the limit E + 0, TG = T(q6)  is just given by the low (two- or one-dimensional) 
limit of the N equation of state (30) and is no longer a function of E. 

Using the analytic estimates (40), (41) and (42), we now analyse the behaviour of q; 
in the two following limiting cases. First, consider the limit 6 -+ 0 at constant s, which 
corresponds to a vanishing of the correlation length in the RUM directions, tr + 0. In this 
limit, one obtains an ensemble of uncoupled planes or lines (in real space) for a RUM line 
and plane, respectively. The dimensionality of the system is effectively reduced to two and 
one, respectively, and one expects a large Ginzburg interval. Indeed, from (36) we obtain 
that q; becomes large in this case since the divergence of the integral in (40) as E + 0 is 
stronger than the approach o f f  to zero given by (42). This argument holds as long as E is 
not too small so that the assumptions Tc FJ Tcm and q; << E/S are fulfilled. For values of e 
considerably smaller than s, the second assumption is violated, and the integral I becomes 
independent of P according to (41). Likewise, T,” wilI tend to zero, leading to a violation 
of the first assumption; at the same time, however, the prefactor (43) becomes independent 
of E as explained above. As E + 0, q; must therefore eventually tend to a constant value, 
which it should reach for values of E well below s. Physically, this corresponds to the 
fact that when E << s, the correlation length along the RUM directions becomes typically 
much smaller than one lattice unit, reducing the system to a collection of uncoupled two- 
or onnedimensional subsystems, with the effect that the size of the GI reaches its limiting 
lower-dimensional value and is no longer affected by a further increase in the anisotropy. 
To summarize, in the first limiting case ( E  + 0, s = constant) the GI becomes independent 
of 6 for E << s, both for a RUM line and a RUM plane. This 6-independent limiting value 
of the GI is fairly large even for very displacive systems, as the numerical results presented 
below will show. 

The second limiting case of interest is s i 0 , e  + 0 with S/E = constant. This 
corresponds to the limit of an infinite correlation length in the non-RUM directions (en -$ CO), 

which can be thought of as arising from completely rigid units, with a fixed correlation length 
along the RUM directions (.$ = constant). For a RUM line, one obtains from (36) 

42 cx f 2 W .  (44) 

One can verify that this is indeed the solution of (36) using the fact that f (6 )  + 0 as F + 0 
and hence q a  + 0. This implies from (40) that Z/s cx q;’(s/“)l’z cx 4;’. and from (30) 
together with c(0) = 1 (see (A1.8)) that TG + Tcm, reducing the left-hand side of (36) to 
f (c)/qc = constant as required. For a RUM plane, on the other hand, one obtains from 
(36) that 

q; FJ constant. (45) 

To verify this solution we observe that from either (40) or (41) one has l / s  cx s-’/’ for 
given q$ and constant s/e and hence f ( ~ ) I / s  a ( E / S ) ” ~  =constant from (42). Estimating 
the dependence of c(&) on s and E in a way analogous to the estimates for I given in 
(40) and (41), one can also show from (30) that To/TJM x constant; the left-hand side 
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of (36) is thus constant, as required. For the second limiting case (s -+ 0, E + 0 with 
S / E  = constant) we have thus found that the GI tends to zero for the case of a RUM line. 
but approaches a non-zero value in systems with a RUM plane. This means that in the limit 
of an infinite correlation length along the nOn-RLiM directions, the short-range correlations 
introduced by the presence of multiple RUMS keep the GI finite for the case of a RUM plane, 
where the strongest fluctuations occur on a two-dimensional sector of wavevector space, 
whereas their effect is suppressed and the system behaves entirely classically for a RUM line, 
where fluctuations are confined to a one-dimensional set of wavevectors. This agrees with 
the general statement that the effect of fluctuations depends strongly on the dimensionality 
of the phase space region where they occur. 

RUM plane 
I RUM tine 

0.01 0.1 1.0 
I E 

0.01 0.1 
f 

Figure 3. Size of the Ginzburg interfd in RUM systems as a function of displaciveness s and 
anisotropy 6. Shown is the value of 42, the square of the normalized order parameter at the 
lower boundary of the GI, as a functioo of 6, with s determined I follows. (4) and (b): Fixed 
s, corresponding lo a fixed Correlation length tm along the non-RUM directions, for systems wilh 
a RUM line and plane respectively. (c) and (a): Fixed SI€, corresponding to a fixed correlation 
length & along the RUM directions, again for a RUM line and plane respectively. Equation (33) 
u n  be used IO convert from q i  to the size ATG of the GI on the temperature scale. 

We now present the results of numerical calculations of 9$@, 6 ) .  These results were 
obtained by directly solving (36) for q& by numerical integration and hence do not involve 
any of the approximations made above in the analytic treatment of the limiting cases. We 
remind readers more used to seeing the size of the GI expressed in terms of a temperature 
interval of the relation (33), which can be used to convert from the order parameter (q$) 
to the temperature (ATo) scale. In figures 3(a) and 3(b) we show for the case of a RUM 
line and plane, respectively, the dependence of q: on E for fixed values of s. This form 
of presentation confirms the results of our analysis of the first limiting case above (e -+ 0 
at s = constant). The initial increase of 92 with decreasing E can clearly be seen, and 92 
attains a constant value for E << s. This limiting value depends only weakly on s and is, 
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even for a very displacive system (s = 0.01), sufficiently large to be detected experimentally 
in a corresponding real system. In figures 3(c) and 3(d) we have plotted, again for the case 
of a RUM line and plane respectively, the dependence of qa on 6 for fixed values of S / E .  

We can thus confirm our results obtained above for the second limiting case s -+ 0, 6 --f 0 
at S / E  = constant. For a RUM line, qi -% 0 as E --t 0, whereas for a RUM plane, 4; tends 
to a constant in the same limit. 

Altogether, our results show that the GI in RUM systems is not necessarily always small 
and can, in fact, be large. The application of our theory to real materials in the next section 
will show, however, that typical ‘real-world’ values for the parameters s and E nevertheless 
yield relatively small GI, of the order of ATG/T, < qi E;: 0.1 or less. 

5. Application to real materials 

In this section, we make quantitative comparisons between the theoretical results of section 4 
for the size of the GI and experimental observations on real materials. We consider the two 
perovskites SrTi03 and M I 0 3  (which have a framework structure of octahedra joined by 
shared oxygen atoms), and the ‘cogwheel’ smcture KZSe04. We also give qualitative 
estimates for quam and cristobalite, which are examples of framework silicates. 

The choice of the three materials for the quantitative calculations was based on the 
availability of experimental data in two respects. It had to be possible to determine the GI 
from the measured temperature dependence of the order parameter or the specific heat, and 
data on the temperature dependence of the soft mode and the dispersion in its environment 
in IC-space had to be available in order to allow a meaningful input of data into our model. 

The perovskites SrTi03 and LaA103 both undergo displacive phase transitions, at 
temperatures around 105K and SOOK, respectively 1171. In both cases, the atomic 
displacement pattern in the ordered phase corresponds to rotations of the perovskitetypical 
octahedra (Ti06 and AlO6, respectively) with opposite signs in neighbouring unit cells, 
corresponding to a soft mode at the corner point R of the Britlouin zone. In SrTiO,, 
the rotation is around one of the cubic axes, leading to a tetragonal structure in the low- 
temperature phase, whereas it is around a body diagonal of the cubic unit cell in LaA103, 
resulting in a trigonal symmetry of the ordered phase. 

In the application to real materials, the field @ in our model effective Hamiltonian 
corresponds to the specific combination of atomic displacements that occurs in each unit 
cell during the phase transition. Assuming that the atomic displacement patterns of the 
Fourier modes @(IC) correspond to actual phonons occurring in the real material, we will 
model the dispersion of the @(k) on that of the corresponding real phonons. 

As explained in section 4, we only need to know the parameters s and E of our model 
effective Hamiltonian (28), i.e. the values of A = s J ,  J and c, in order to determine the 
size of the GI relative to the transition temperature. 

For SrTiO3, this quadratic pan was obtained from experimental data as follows. The 
dispersion of the three phonon branches containing the threefold degenerate soft mode at 
the R point was taken from [18,19] in the form of the dynamical mahix 

Rjj(IC) = [u(T) + A(kz + fk?) ]&j  + Ahk,kj(l - 6 j j )  (46) 

with 

A = 216 * 20 (THz A)’ f = -0.97 j, 0.01 h = 0.19 rt 0.04. (47) 



3186 P Sollich et al 

Neglecting the off-diagonal elements, which give a small relative second-order frequency 
shift of the order of h2/lfl % 0.04, one obtains, with a value for the lattice constant of 
SrTiO3 of a = 3.9A 1201, the model parameter values 

J = 2h/az % 28 THzz (48) E = 1 -t f = 0.03 i 0.01. 

The parameter A = SJ was obtained &om the measured soft-mode frequency above 
T, as follows. The measurements by Cowley and co-workers 1211 yield a linear 
temperature dependence of the soft-mode frequency squared above Tc, which extrapolates 
to approximately -1.2THzZ at zero temperature. Hence A was determined from the 
requirement that, for the given values of J and E ,  the soft-mode frequency predicted by the 
rm approximation extrapolate to the same value at T = 0, with the result A = 2.0Wz2.  
The displaciveness parameter s is thus s % 2/28 = 0.07. 

We now obtain with this input from the IM criterion (36) the value of q;, the square of 
the order parameter (normalized to its value at zero temperature) at the lower boundary of 
the GI. Inserting the extreme values of the anisotropy parameter, E = 0.02 and 0.04, and 
choosing K = 1 and 0.5 we find 

0.09-0.12 K = 1 
0.25-0.29 K = 0.5. 

(49) 

In view of the rather pronounced dependence of these results on K ,  no detailed analysis 
of the effect of the uncertainties in the values of A and J was carried out. 

The above theoretical results can now be compared to the experimental observations 
by Mueller and Berlinger 1171. They found a linear dependence of Qz on temperature for 
0.7 < TIT,  < 0.9 which extrapolates to zero at T zz 1.05 Tc, whereas for 0.9 < T / T ,  6 1, 
Q z ( T )  deviates from a straight line; the authors conclude that the GI is of the order 0. IT,. 
The above results (49) agree quantitatively with thii observation. The approximately linear 
dependence of q 2 ( T )  for 0.7 < T/Tcw < 0.9 predicted by the IM approximation for our 
model extrapolates to zero at % 1.2 T,"", yielding T, % 1.2 T:'/l.05 % 1.14 T2M as an 
estimate for the relation between the real transition temperature and the one predicted by 
the IM approximation; the temperatures TO corresponding to the average values q; = 0.27 
and 0.105 taken from (49) for K = 0.5 and K = 1, respectively, can be calculated from the 
IM equation of state (A1.6) to be 0.93Tcm % 0.81Tc and 1.04T:M i= 0.91Tc, bracketing the 
experimental value of 0.9Tc for the lower boundary temperature TO of the GI. Note that the 
inequality (33). ATG/T, 6 q& is satisfied since for both values of K 

and that q; provides a fairly tight bound on ATGIT,. 
We note that the interpretation by Mueller and Berlinger [17] of the experimentally 

observed size of the GI is different from ours, They use the traditional Ginzburg criterion 
for isotropic systems to find a zero-temperature correlation length in the sense of [6,7] of 
60 = 1.36 nm, i.e. in  lattice units [o/a i= 3.3, and interpret this as a short-range correlation 
between octahedra at equivalent positions in the ordered phase which has a lattice constant 
of 2a. 

Ginzburg [221, on the other hand, estimated a zero-temperature correlation length (0 
greater than five lattice units for SrTiO, and concluded, again from the isotropic Ginzburg 
criterion, that the GI should be experimentally unobservable. 
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Our interpretation takes account of the strong anisotropy caused by the existence of 
RUM lines. In the direction perpendicular to the RUM lines we have a correlation length 
of approximately t,, = s-’” is; 4.8 lattice units, in agreement with Ginzburg’s estimate 
and in contradiction to the Mueller and Berlinger result of short-range correlations. Along 
the direction of a RUM line, however, the correlation length is approximately given by 
& = c’f l t0,  hence smaller by a factor of 6’” 0.14-0.2 and thus of the order of one lattice 
unit. As our calculation shows, the GI is determined by both these correlation lengths and 
the inherent anisotropy of the correlations cannot be neglected. 

We now turn to the case of LaA103. In this material, the displacement pattern i n  the 
ordered phase is a rotation of A106 octahedra about a body diagonal of the cubic lattice, 
corresponding to a linear combination with equal weights of rotations around the cubic axes 
x ,  y and z .  The bare phonon spectrum, taken as a whole, is again very anisotropic with RUM 
lines in the k , ,  ky and k, directions along the edges of the Brillouin zone. However, these 
RUMS involve rotations about the x ,  y and z axes respectively, and thus do not correspond to 
the order parameter of the actual transition. Our one-component model (28) of section 6 only 
involves fluctuations of the latter, with other phonons being irrelevant. Since the observed 
order parameter contains all three rotations equally, it would seem that we need to take an 
isotropic model. The lack of anisotropy in the fluctuations has been observed experimentally 
by Kjems and co-workers [23] who have already alluded to a similar explanation. 

From the data of [23] the model parameters A = sJ, J and E were obtained in the 
same way as for the case of SrTiO3 above. The soft-mode branch dispersion around the R 
point is observed to be w2 = hk2 with h = 2000meVA’ for all three soft-mode branches, 
yielding c = 1 and, with the lattice constant a = 3.79A [24], J = 2b/a2 e 280meV’. The 
observed linear temperature dependence of the square of the soft-mode frequency (denoted 
by in [23]) above the transition extrapolates to approximately -57meV2 at T = 0, 
and the corresponding value of the parameter A was found to be A .cx 95 meV2, leading to 
s ~3 951280 It: 0.34. 

The calculated values of q: for these model parameters are, again for K = 1 and K = 0.5: 

0.09 K = l  

“ = 10.28 K = 0.5 

The close similarity of the q i  values obtained for SrTiO, and LaA10, agree well with 
the experimental observation by Mueller and Berlinger [17], who found that the dependence 
of the order parameter on temperature (measured on the scale of the transition temperature) 
in the two materials-and hence the size of the GI relative to T,-was strikingly similar. 

While our considerations cannot, of course, explain why the parameters for the dispersion 
in the two perovskites we have considered conspire with differing degrees of anisotropy to 
give the same size of the GI, the above comparison shows that our calculations take correct 
account of the influence of anisotropies on the size of the GI and that the results agree well 
with experiment. 

We have already shown in section 1 that the idea of RUMS can be extended to cogwheel 
structures in  which the rotations of adjacent rather rigid units are coupled through steric 
hindrance between them. The AzB& family of compounds provide a good example [ Z ] .  
Many of them undergo phase transitions in which all the BXq units (which present a 
triangular profile in the yz plane) in the same yz  layer rotate together in the same sense [25]. 

This rotation about the x axis is the major component in the order parameter of the 
incommensurate phase transition [25]. For K2SeO4, the observed 1261 and calculated [25,27] 
phonon spectra are very anisotropic, with an anisotropy ratio nearly as great as in SrTiO, 
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above. Thus we can apply the RUM phonon model of section 2, in particular equation (U). 
for a RUM line describing softish phonons along the kx axis with hard phonons everywhere 
else. 

We can make estimates of the quantities A = s J ,  J and E for KzSe04 as follows. We 
note from [25] that the overall width of the phonon spectrum from Raman spectroscopy 
and computer simulations is 162cm-', excluding intemal optic modes of the BX, units, 
which are treated as rigid. This width includes optic vibrations of the Kt ions against 
the Se0;- ions and we therefore reduce our width rather arbitrarily to 125cm-', giving 
2 5  = 15 625 cm-'. For the soft-mode RUM band we adopt the revised computer model 
of [27] and on the positive o* side we include the non-acoustic part near IC = 0, giving a total 
RUM bandwidth from -31 cm-' to +33cm-', i.e. of2c.I = (312+332)cm-2 = 2 0 5 0 ~ m - ~ .  
The value of A = sJ is the negative o' of the bare soft mode, which from the phonon 
model in [ZS] is A = 960cm-'. This seems more reliable than the value A = 1600cm-' 
of the earlier phonon model [U].  The value A = 960cm-' is also reasonable because it 
is somewhat larger (as it should be) than the extrapolation of the observed U' from above 
Tc down to T = 0 which gives Iw'(exuapolated)[ = 630cm-' [25]. These estimates are 
probably as good as can currently be made; in particular, we note that the RUM branch 
does not soften uniformly as a whole [28], unlike our model. With these reservations 
therefore we have s 0.12 and 6 % 0.13. From figure 3(c) we can then simply read off 
&(K = 1) = 0.08 and, with the transition temperature T, = 130K, a Ginzburg interval 
ATG < 4iTc sx 10K. The specific heat data from [29] gives ATG e 5-10K, which we 
consider to be reasonable agreement. 

We end this section by qualitatively considering quartz and cristobalite. Our motivation 
is that they can be taken as representative of silicate framework structures with tetrahedral 
Si04 units, for which the RUM model was originally developed. Both quartz (see for 
example [30]) and cristobalite I311 have a first-order transition (whereas our model gives 
a second-order transition), and the square of the order parameter does not vary linearly 
with temperature outside the GI as our model predicts. Hence no direct comparison of the 
theoretical results given below with experiment is possible. We may simply take our values 
of s and E as well as the calculated ATo/T, < 42 as typical of what might be expected in 
tetrahedral framework silicates. Due to the lack of experimental information, we base our 
theoretical estimates on computed phonon spectra. 

We have calculated phonon spectra for the @ phases of quartz and cristobalite using 
the interatomic potentials of [32]. These required the use of the ideal structures, which 
are probably not fully realized in the real situations owing to the apparently shortened Si- 
0 bonds. Accordingly we have also incorporated recent inelastic neutron scattering data 
for quartz 1301. In the case of quartz we calculate from the bare frequency at k = 0 a 
value of A = S J  = 6THz'. The experimental value is of the order of 1.5THz2, found by 
extrapolating the data of [30] to T = 0 K. The RUM bands extend to 0,2.5 and 4THzz along 
the RUM lines in the A ,  C and A directions respectively. If we take an average of these 
values, and use the experimental value for A, we obtain an estimate for 2cJ = 3.5THz2, 
giving a value for the ratio of s/c of order unity. We estimate a value for 25 as given 
by the range of phonon frequencies excluding the modes involving S i 4  stretch motions, 
which gives 2J = 130THz2. Thus we have s Y E Y 0.025. We stress that these are only 
rough estimates, but we believe that they will be appropriate for other silicates such as 
cristobalite. 

Quartz is an example of a system with lines of RUMS. Using our estimates for s and E 
we read from figures 3(a) and (c) the result ATG/T, < q i  sx 0.045, which with T, = 858K 
gives a value for ATG of about 40K. 
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Cristobalite is an example of a system with planes of RUMS [4, 14,331. From figures 3(6) 
and 3(d) we note that for a constant value of S / E  the size of qG is fairly insensitive to the 
value of s (or equivalently to E ) .  Using the same values of s and 6 as we used for quartz, 
we obtain 4: = ATG/T, M 0.1. The transition in cristobalite is strongly first order, so it 
is not clear whether the value for Tc should be the actual transition temperature (530K) or 
the temperature that appears in the quadratic term of the Landau free energy (230 K), i.e. 
the point towards which the order parameter susceptibility will diverge. These give values 
for AT, of about 50K and 25K respectively, but in any case it should be noted that the 
discontinuity in the order parameter at the transition is larger than our estimate of qG. 

The sizes of the GI we have estimated for quartz and cristobalite are larger than we had 
initially expected [3.4]. Our estimates, though, are subject to error, perhaps as large as a 
factor of 2-3, but probably not large enough to allow the size of the GI to become vanishingly 
small. However, large values for the GI might suggest that the first-order transitions in these 
systems could be valid examples of fluctuation-driven first-order transitions (I P Swainson, 
private communication). 

It is worth commenting that in all the materials discussed'above we have s of the order 
of 0.1. This seems to be typical of the ratio of Coulomb forces which are active in RUMS, 
to the atomic hard-core repulsions which come into play in non-RUMS. The value of s 
can be related to the coefficient 01 in the Landau free energy (1) by a slight reworking of 
renormalized phonon theory (V Heine, unpublished) and it can be checked that s z 0.1 
does indeed correspond to the values of (Y typically found in soft-mode phase transitions 
(R Currat, private communication). 

6. Comparison with computer experiments 

In order to confirm our results from section 4 for the size of the Ginzburg interval in 
RUM systems over a wider range of model parameters than that covered by real materials, 
computer simulations of the system described by the effective Hamiltonian (28) were carried 
out in the displacive anisotropic regime (s, E << 1) relevant for the description of RUM 
systems. 

From the 'experimental' results of these simulations, the GI was determined by 
comparing the observed temperature dependence of the order parameter with the predictions 
of the IM approximation and identifying the order parameter value at which the agreement 
became unsatisfactory. Given that it is expected that the computer experiments will begin to 
see the finite sample size at temperatures close to the transition temperature, the agreement 
between the simulations and the results of the IM model will provide an upper bound on the 
value of the GI rather than the actual size of the GI. 

The 454 Hamiltonian (28) has been used extensively as a standard model for phase 
transitions and has, of course, been investigated by computer simulations before. In 
particular, Schneider and Stoll 134,351 have performed extensive studies of the isotropic 454 
model in two and three dimensions, focusing on critical behaviour and dynamical aspects. 
Kerr and Bishop [36] have studied an extremely anisotropic two-dimensional model, again 
with an emphasis on the model dynamics. Padlewski and co-workers [37] have studied the 
crossover from order-disorder to displacive behaviour in the isotropic 454 model. 

The simulations were carried out on the AMT distributed array processor (DAP) in 
Cambridge, which has 4096 processors. The simulated sample was a 16 x 16 x 16 cubic 
lattice, on which periodic boundary conditions were imposed in order to eliminate surface 
effects as far as possible. A microcanonical ensemble was used: thus the equations of motion 
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for the fields 4j were just the Newtonian equations of motion that result when the effective 
Hamiltonian (28) is treated as a classical potential energy. The numerical integration of these 
equations was performed using the leap-frog Verlet algorithm, as described in [38,39]. 

Two series of model parameters were studied, separately for the case of a RUM line and 
plane: 

(s. E )  = (0.05, 1) (0.05,O.l) (0.05,O.Ol) 

(s,  E )  = (5, I )  (0.5.0.1) (0.05,O.Ol). 
(52) 

These two series correspond to the approach to the two limiting cases discussed 
in section 6. In the first series, s = constant and E decreases, implying that the 
correlation length & along the RUM directions decreases towards zero: in the second series, 
S / E  = constant and s --f 0, corresponding to the case where the correlation length tn along 
the non-RUM directions becomes large. We remark that the first parameter set (s = 5, E = 1 )  
in the second series of (52) actually corresponds to a non-displacive isotropic system, which 
we do not expect to be a good model for real RUM systems and for which our analysis in 
terms of the IM as the best classical approximation is not strictly valid. We nevertheless 
included this case to make the overall trend in the second parameter series more obvious. 

The results for the order parameter as observed in our simulations are shown in figures 3 
and 5, together with the predictions of the 1~ approximation and the GI as calculated from 
(36) for K = 0.5 and 1. The first series of model parameters is shown in figure 4, and the 
second one in figure 5. Note that in the temperature region where the IM equation of state 
(A1.6) has two solutions for q2(T),  the lower branch is unstable, and the upper branch is 
only metastable above the first-order transition predicted by the IM approximation. Also 
note that we worked with units in which J = Qi = 1 and k~ = 1. 

It can clearly be seen that the agreement between the computer experiments and the I M  
predictions is satisfactory outside the calculated GI, especially when it is taken into account 
that no fitting parameters or correction factors for finite-size effects have been introduced. 
Inside the calculated GI, on the other hand, deviations between the LM predictions and the 
computer experiments occur as expected. 

We further exploited the results of the computer experiments in order to see how well 
the size of the GI, determined from the temperature dependence of the order parameter, 
correlates with what one would obtain by analysing other observables of the system. As 
these other observables we chose the squared renormalized phonon frequencies at five 
specific wavevectors, which were measured as a function of temperature and compared to 
the best classical, i.e. IM approximation. predictions. The results, which we do not present in 
detail here, show that indeed the size of the GI determined from the renormalized frequencies 
correlates well, at least qualitatively, with that determined from the order parameter. 

In conclusion, it can be said that the computer experiments support the theoretical 
analysis of section 4 for the size of the GI in systems described by the effective Hamiltonian 
(28) which we used to model the characteristic features (displaciveness and anisotropy) of 

Although the simulations presented here were aimed at studying a different region of the 
parameter space of the 44 model than that investigated by Padlewski and co-workers [37], 
the results have some bearing on their conclusion that the 44 model exhibits classical 
behaviour only in the double limit of displaciveness and long interaction range. In fact. 
the results for the most displacive isotropic system studied above (s = 0.05. E = 1; see the 
top graph of figure 4) show that classical behaviour is obtained for pure nearest-neighbour 
interactions if the system is displacive enough. The discrepancy with the conclusion of 

RUM systems. 
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Figure 4. Square of the normalized order parameter q2 as a function of temperature T, as 
measured in computer experiments (diamonds) and as predicted by the IM approximation (full 
N N ~ S ) .  The GI can be read off as the temperature interval where large discrepancies occur. 
The horizontal dotted and broken lines indicate the theoretical values q: for q’ on the lower 
boundary of the GI as calculated from (36) for Y = 0.5 and 1 respenively. Shown. from top 
to bottom. are the first parameter series from (53, bolh for a RUM line and a RUM plane as 
indicated For f = 1. one has only an isolated RUM. 

Padlewski and co-workers can be attributed to the fact that they investigated systems with 
(in our notation) s 1.5, which are not displacive enough to exhibit classical behaviour 
for short-range coupling. 

7. Summary 

We have analysed the Ginzburg interval (GI) in soft-mode phase transitions using the rigid 
unit mode (RUM) picture. This applies to framework structures of relatively stiff units 
linked by shared corner atoms, and to ‘cogwheel’ structures where the rotations and/or 
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Figure 5. The analogue of figure 4, for the second model parameter series from (52)  

displacements of units touching one another are linked due to steric hindrance. The essential 
features of RUM systems are displaciveness, i.e. closeness to the soft-mode limit (s << 1) and 
anisotropy ( E  <( 1) or, equivalently, the presence of two very different correlation length 
scales. We have found that the magnitude of the GI relative to the transition temperature 
can in principle have any value, from large to very small. The actual value depends on 
the balance of s and E as well as on the dimensionality of the RUM sector in Ic-space; in 
particular, in the limit of infinitely rigid structural units, the GI is zero for a system with a 
RUM line but finite for the case of a RUM plane. 

The results of the theoretical analysis were found to agree with the results of computer 
simulations and experimental observations on the framework perovskites SrX03 and 
LA103 and the cogwheel structure KZSe04. Qualitative estimates of the model parameters 
and the size of the GI for framework silicates were also given, using quartz and cristobalite 
as examples. We found in aU these cases a GI AT0 of the order of 0.17', or less, a value 
which is, as expected, considerably smaller than in typical order-disorder phase transitions 
(see for example [SI). 
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In conclusion, it is worth emphasizing that although the inherent anisotropy of RUM 
systems can in principle lead to a large GI, this effect is countered by the fact that almost all 
the real materials that we have considered are very displacive, i.e. close to the soft-mode 
limit, leading to a fairly small GI. Further investigation is needed to clarify the extent to 
which this reflects the behaviour of real materials in general. 

Appendix 1. Results of the IM approximation 

In this appendix we summarize the results of the IM (independent-mode) approximation 
as applied to our model effective Hamiltonian for RUM systems (28). For more details 
on the IM approximation, we refer the reader to [8,15]. We emphasize that all results are 
obtained from classical statistical mechanics without taking quantum mechanical corrections 
into account. 

The IM approximation considers the class of ’trial Hamiltonians’ that are quadratic in 
the deviations of the 4; from their mean values & (r#+): 

A& = 4; - & .  (Al.l)  

These ‘trial Hamiltonians’ can be written in the form 

(A1.2) 

and thus decouple the different Fourier modes A@@) of the system, treating their 
fluctuations as independent. Since we have set the mass scale to unity, we can identify the 
K ( k )  with the renormalized frequencies (within the IM approximation) of the corresponding 
phonon modes: 

K ( k )  = &,(k). (A1.3) 

By minimizing a ‘trial free energy’ which is an upper bound for the true free energy, 
the 1M approximation establishes the trial Hamiltonian that best approximates the behaviour 
of a system described by the exact Hamiltonian (28). 

Assuming as in our model that J(k) has its minimum at IC = 0, the ordered (low- 
temperature) phase is uniform and can be characterized by an order parameter Q such 
that 

(AI .4) 

If we further use the fact that for J(k) as defined in (25) and (26) we have J ( 0 )  = 0, the 
results of the IM approximation can be written as follows. 

In the ordered phase ( Q  # 0) 

K ( k )  = J(k) + 2SJq2  (AIS) 

where q = Q/Qo is the order parameter normalized to its zero-temperature value given by 
Qi = s J / B .  The value of q as a function of temperature is determined as the solution of 
the equation 

(A1.6) 1 - 42 = (T/T?)c(q2) 
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where 

is a decreasing function of its argument with 

c(0) = 1 

and we have further used the definitions 

(A1.7) 

(AM) 

(A1.9) 

Here Tcm is the lower stability limit of the disordered phase within the IM approximation; 
however, the equation of state (A1.6) admits stable, or at least metastable, solutions with 
non-zero Q up to a temperature 7‘’ > Tcm, and the IM approximation actually predicts 
a first-order transition at a temperature between TCM and T P ,  where the free energies of 
ordered and disordered phase become equal. 

In the disordered phase (Q = 0), K ( k )  has to be obtained self-consistently from 

K ( k )  -sJ + J ( k )  + 3sJA2/Q;  (A1.lO) 

where 

1 1 
A’ = - E((A&)*) = kBT- x ( K ( k ) ) - ’  

N i  N k  
(Al.11) 

measures the local fluctuation of the fields ~$1. 

We remark that the IM approximation predicts a temperature-dependent shift of the 
phonon spectrum that is uniform across the Brillouin zone, since the difference between the 
squared renormalized frequencies, K ( k ) ,  and the squared bare frequencies, -sJ + J ( k ) .  is 
independent of k in the ordered phase (A1.5) as well as in the disordered phase (Al.10). 
The scale of this frequency shift is set by sJ = A ,  as can be seen from (A1.5), (A1.10) 
using the fact that q 2  and A2/Qi are both of order unity or less. 

Appendix 2. Limits of validity of the mi approximation 

In order to calculate the size of the GI, we now want to establish a criterion for validity 
of the IM approximation when applied to the effective Hamiltonian (28). As discussed in 
sections 3 and 4, the l i t  of validity of the IM approximation determines the size of the 
GI since the IM is the best classical approximation available for the effective Hamiltonian 
(28) in the displacive regime that we are interested in. According to our general remarks 
in section 3,  we restrict our attention to the validity of the IM approximation in the ordered 
(low-temperature) phase. 

We determine the limits of validity of the IM approximation by checking its consistency 
with the exact relationship between the susceptibility of the local order parameter & to a 
linearly coupled external field, and the fluctuations of the &. We denote the external field 
at site j by hj and define the susceptibility as 

xi, = a&/ahj. (AZ.1) 
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In Fourier space, the exact relation between this susceptibility and the fluctuations of the @i 

is then 

where we have used the definition 

for the Fourier transform of the susceptibility. The right-hand side of (A2.2) is, from the 
simple form of the 1M Hamiltonian (A1.2), simply equal to l /K(k).  The left-hand side 
can be evaluated by introducing the coupling term - xi h& into the original Hamiltonian 
(28) and then calculating the 4; for infinitesimal fields hi within the Ihl approximation. One 
obtains 115,161 as the analogues of (AlS),  (A1.6) 

K ( k ) =  - s J +  J ( k ) + 3 s J ( $ Z + A 2 ) / Q ~  W.4)  

with &z = ( l /N)  xi &;, and 

s J ( 3 A z / Q ; -  l ) & i + ~ J $ : / Q i + ~  J .  L J  .+. J - - h .  I .  (A2.5) 
j 

In writing these equations we have used the Fourier transform J i j  of J ( k )  defined in a way 
exactly analogous to (A2.3). 

By taking the derivative of (A2.5) with respect to the external field hj and afterwards 
setting all external fields to zero, one can derive that in the ordered phase 

(A2.6) 
dAz 

(x(k))-’ = K ( k )  + 8(k)6sJqz- 
d4* 

where from the definition (Al . l l )  of Az and (A2.4), one has 

A ’ = ” C  k T  1 
N It -sJ + J(k)  + 3sJ(AZ + 4’)/Q,” (A2.7) 

which implicitly defines A’ as a function of q2, From (A2.6). one sees that the exact 
fluctuation-susceptibility relation (A2.2) is satisfied for all wavevectors k f 0, but that in 
order for it to hold also for k = 0, we require 

The derivative can be evaluated to be 

where z is given by 

(A2.8) 

(A2.9) 

(A2.10) 



3196 P Sollich et al 

The inequality ( A B )  is therefore z/(l + z) << f or, equivalently, z << i, yielding the 
criterion 

1 c < l  
3 T J m l  

T ~ M  sJ k (q2+ J(k)/ZsJ)' 
(A2.11) 

for consistency of the UI approximation with the fluctuation-susceptibility relation (A2.2). 
In OUT approach to establishing the limits of validity of the M approximation, the lower 
boundary of the GI is then determined by setting the left-hand side of the last inequality equal 
to a constant of the order of unity and solving for q2 = q;, the square of the normalized 
order parameter at the lower boundary of the GI. 
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